Avoidance of a giant component in half the edge set of a random graph
نویسندگان
چکیده
Let e1, e2, . . . be a sequence of edges chosen uniformly at random from the edge set of the complete graph Kn (i.e. we sample with replacement). Our goal is to choose, for m as large as possible, a subset E ⊆ {e1, e2, . . . , e2m}, |E| = m, such that the size of the largest component in G = ([n], E) is o(n) (i.e. G does not contain a giant component). Furthermore, the selection process must take place on-line; that is, we must choose to accept or reject an ei based on the previously seen edges e1, . . . , ei−1. We describe an on-line algorithm that succeeds whp for m = .9668n. Furthermore, we find a tight threshold for the off-line version of this question; that is, we find the threshold for the existence of m out of 2m random edges without a giant component. This threshold is m = cn where c satisfies a certain transcendental equation, c ∈ [.9792, .9793]. We also establish new upper bounds for more restricted Achlioptas processes.
منابع مشابه
Total domination in $K_r$-covered graphs
The inflation $G_{I}$ of a graph $G$ with $n(G)$ vertices and $m(G)$ edges is obtained from $G$ by replacing every vertex of degree $d$ of $G$ by a clique, which is isomorph to the complete graph $K_{d}$, and each edge $(x_{i},x_{j})$ of $G$ is replaced by an edge $(u,v)$ in such a way that $uin X_{i}$, $vin X_{j}$, and two different edges of $G$ are replaced by non-adjacent edges of $G_{I}$. T...
متن کاملRamsey games with giants
The classical result in the theory of random graphs, proved by Erdős and Rényi in 1960, concerns the threshold for the appearance of the giant component in the random graph process. We consider a variant of this problem, with a Ramsey flavor. Now, each random edge that arrives in the sequence of rounds must be colored with one of r colors. The goal can be either to create a giant component in e...
متن کاملMORE ON EDGE HYPER WIENER INDEX OF GRAPHS
Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge set E(G). The (first) edge-hyper Wiener index of the graph G is defined as: $$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$ where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). In thi...
متن کاملEdge pair sum labeling of some cycle related graphs
Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...
متن کاملTHE (△,□)-EDGE GRAPH G△,□ OF A GRAPH G
To a simple graph $G=(V,E)$, we correspond a simple graph $G_{triangle,square}$ whose vertex set is ${{x,y}: x,yin V}$ and two vertices ${x,y},{z,w}in G_{triangle,square}$ are adjacent if and only if ${x,z},{x,w},{y,z},{y,w}in Vcup E$. The graph $G_{triangle,square}$ is called the $(triangle,square)$-edge graph of the graph $G$. In this paper, our ultimate goal is to provide a link between the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Random Struct. Algorithms
دوره 25 شماره
صفحات -
تاریخ انتشار 2004